The neural basis of the speed-accuracy tradeoff.

نویسندگان

  • Rafal Bogacz
  • Eric-Jan Wagenmakers
  • Birte U Forstmann
  • Sander Nieuwenhuis
چکیده

In many situations, decision makers need to negotiate between the competing demands of response speed and response accuracy, a dilemma generally known as the speed-accuracy tradeoff (SAT). Despite the ubiquity of SAT, the question of how neural decision circuits implement SAT has received little attention up until a year ago. We review recent studies that show SAT is modulated in association and pre-motor areas rather than in sensory or primary motor areas. Furthermore, the studies suggest that emphasis on response speed increases the baseline firing rate of cortical integrator neurons. We also review current theories on how and where in the brain the SAT is controlled, and we end by proposing research directions that could distinguish between these theories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Neural Mechanisms of Speed-Accuracy Tradeoff

Intelligent agents balance speed of responding with accuracy of deciding. Stochastic accumulator models commonly explain this speed-accuracy tradeoff by strategic adjustment of response threshold. Several laboratories identify specific neurons in prefrontal and parietal cortex with this accumulation process, yet no neurophysiological correlates of speed-accuracy tradeoff have been described. We...

متن کامل

Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset

Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...

متن کامل

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

A neural mechanism of speed-accuracy tradeoff in macaque area LIP

Decision making often involves a tradeoff between speed and accuracy. Previous studies indicate that neural activity in the lateral intraparietal area (LIP) represents the gradual accumulation of evidence toward a threshold level, or evidence bound, which terminates the decision process. The level of this bound is hypothesized to mediate the speed-accuracy tradeoff. To test this, we recorded fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in neurosciences

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2010